Abstract

A linear system with a quadratic cost function, which is a weighted sum of the integral square regulation error and the integral square input, is considered. What happens to the integral square regulation error as the relative weight of the integral square input reduces to zero is investigated. In other words, what is the maximum accuracy one can achieve when there are no limitations on the input? It turns out that the necessary and sufficient condition for reducing the regulation error to zero is that 1) the number of inputs be at least as large as the number of controlled variables, and 2) the system possess no right-half plane zeros. These results are also dualized to the optimal filtering problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.