Abstract
We study the recognition problem for composite objects based on a probabilistic model of a piecewise regular object with thousands of alternative classes. Using the model's asymptotic properties, we develop a new maximal likelihood enumeration method which is optimal (in the sense of choosing the most likely reference for testing on every step) in the class of "greedy" algorithms of approximate nearest neighbor search. We show experimental results for the face recognition problem on the FERET dataset. We demonstrate that the proposed approach lets us reduce decision making time by several times not only compared to exhaustive search but also compared to known approximate nearest neighbors techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.