Abstract

AbstractWe study the isomorphic structure of $(\sum {\ell }_{q})_{c_{0}}\ (1< q<\infty )$ and prove that these spaces are complementably homogeneous. We also show that for any operator T from $(\sum {\ell }_{q})_{c_{0}}$ into ${\ell }_{q}$ , there is a subspace X of $(\sum {\ell }_{q})_{c_{0}}$ that is isometric to $(\sum {\ell }_{q})_{c_{0}}$ and the restriction of T on X has small norm. If T is a bounded linear operator on $(\sum {\ell }_{q})_{c_{0}}$ which is $(\sum {\ell }_{q})_{c_{0}}$ -strictly singular, then for any $\epsilon>0$ , there is a subspace X of $(\sum {\ell }_{q})_{c_{0}}$ which is isometric to $(\sum {\ell }_{q})_{c_{0}}$ with $\|T|_{X}\|<\epsilon $ . As an application, we show that the set of all $(\sum {\ell }_{q})_{c_{0}}$ -strictly singular operators on $(\sum {\ell }_{q})_{c_{0}}$ forms the unique maximal ideal of $\mathcal {L}((\sum {\ell }_{q})_{c_{0}})$ .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call