Abstract

Large-conductance, calcium-activated potassium (maxi-K) channels regulate neurotransmitter release and neuronal excitability, and openers of these channels have been shown to be neuroprotective in models of cerebral ischemia. The authors evaluated the effects of postinjury systemic administration of the maxi-K channel opener, BMS-204352, on behavioral and histologic outcome after lateral fluid percussion (FP) traumatic brain injury (TBI) in the rat. Anesthetized Sprague-Dawley rats (n = 142) were subjected to moderate FP brain injury (n = 88) or surgery without injury (n = 54) and were randomized to receive a bolus of 0.1 mg/kg BMS-204352 (n = 26, injured; n = 18, sham), 0.03 mg/kg BMS-204352 (n = 25, injured; n = 18, sham), or 2% dimethyl sulfoxide (DMSO) in polyethylene glycol (vehicle, n = 27, injured; n = 18, sham) at 10 minutes postinjury. One group of rats was tested for memory retention (Morris water maze) at 42 hours postinjury, then killed for evaluation of regional cerebral edema. A second group of injured/sham rats was assessed for neurologic motor function from 48 hours to 2 weeks postinjury and cortical lesion area. Administration of 0.1 mg/kg BMS-204352 improved neurologic motor function at 1 and 2 weeks postinjury (P < 0.05) and reduced the extent of cerebral edema in the ipsilateral hippocampus, thalamus, and adjacent cortex (P < 0.05). Administration of 0.03 mg/kg BMS-204352 significantly reduced cerebral edema in the ipsilateral thalamus (P < 0.05). No effects on cognitive function or cortical tissue loss were observed with either dose. These results suggest that the novel maxi-K channel opener BMS-204352 may be selectively beneficial in the treatment of experimental TBI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.