Abstract

The Mauriceville and Varkud plasmids are retroid elements that propagate in the mitochondria of some Neurospora spp. strains. Previous studies of endogenous reactions in ribonucleoprotein particle preparations suggested that the plasmids use a novel mechanism of reverse transcription that involves synthesis of a full-length minus-strand DNA beginning at the 3' end of the plasmid transcript, which has a 3' tRNA-like structure (M. T. R. Kuiper and A. M. Lambowitz, Cell 55:693-704, 1988). In this study, we developed procedures for releasing the Mauriceville plasmid reverse transcriptase from mitochondrial ribonucleoprotein particles and partially purifying it by heparin-Sepharose chromatography. By using these soluble preparations, we show directly that the Mauriceville plasmid reverse transcriptase synthesizes full-length cDNA copies of in vitro transcripts beginning at the 3' end and has a preference for transcripts having the 3' tRNA-like structure. Further, unlike retroviral reverse transcriptases, the Mauriceville plasmid reverse transcriptase begins cDNA synthesis directly opposite the 3'-terminal nucleotide of the template RNA. The ability to initiate cDNA synthesis directly at the 3' end of template RNAs may also be relevant to the mechanisms of reverse transcription used by LINEs, group II introns, and other non-long terminal repeat retroid elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.