Abstract

BackgroundBrain microvascular endothelial cells (BMECs) play a major role in the blood–brain barrier (BBB), and are critical for establishing an in vitro BBB model. Currently, iPSC-derived BMECs (iBMECs) have been used to construct in vitro BBB models with physiological barrier functions, such as high trans-endothelial electrical resistance (TEER) and expression of transporter proteins. However, the relatively low p-glycoprotein (P-gp) level and a decrease in the efflux ratio of its substrates in iBMECs suggest their immature nature. Therefore, more mature iBMECs by optimizing the differentiation induction protocol is beneficial for establishing a more reliable in vitro BBB model for studying central nervous system (CNS) drug transport.MethodsTo identify human brain endothelial cell fate-inducing factors, HUVEC was transfected with Zic3A-, Zic3B-, and Sox18-expressing lentivirus vector. Since SOX18 was found to induce BMEC properties, we used a Dox-inducible Tet-on system to express SOX18 during iBMEC differentiation and explored the impact of SOX18 expression on iBMEC maturation.ResultsSox18-mediated iBMECs achieved a higher TEER value than normal iBMECs (> 3000 Ω cm2). From day 6 to day 10 (d6–10 group), the iBMECs with SOX18 expression expressed a series of tight junction markers and showed upregulation of Mfsd2a, a specific marker of the BBB. The d6–10 group also expressed SLC2A1/Glut1 at levels as high as normal iBMECs, and upregulated ABCB1/P-gp and ABCC1/MRP1 expression. Moreover, Sox18-mediated iBMECs showed higher viability than normal iBMECs after puromycin treatment, indicating that SOX18 expression could upregulate P-gp activity in iBMECs.ConclusionsInducible SOX18 expression in iBMECs gained BBB phenotypes, including high TEER values and upregulation of tight junction-related genes, endothelial cell (EC) markers, BBB transporters, and higher cell viability after treatment with puromycin. Collectively, we provide a differentiation method for the maturation of human iPS cell-derived BMECs with SOX18 expression, describing its contribution to form an in vitro BBB model for CNS drug transport studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call