Abstract

We present in this paper an analysis of the long term stability of Trojan type orbits of both Uranus and Neptune. Employing the Frequency Map Analysis (hereinafter FMA) we measure the diffusion speed in the phase space for a large sample of Trojan orbits with short numerical integrations. High resolution diffusion maps are derived for different values of initial inclination. These maps outline where the most stable orbits can be found in the Trojan clouds of the two planets. The orbit of the newly discovered Neptune Trojan 2001 QR322 has been analysed in detail with the FMA method. In the phase space the body is located close to the border of a stable region for low inclination Neptune Trojans. Numerical integrations over 4.5 Gyr of clone orbits generated from the covariance matrix show that only 10% of the clones escape from the Trojan cloud. The proper frequencies of the Trojan motion computed with the FMA algorithm allow us to to derive a numerical secular theory. From this theory it is possible to locate in the phase space the main secular resonances that can perturb Trojan orbits of the two planets and lead to instability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call