Abstract

Fungi in the genus Chrysoporthe are economically important canker pathogens of commercially grown Eucalyptus species and native Myrtales. Before the current study, homothallism was widely accepted as the mating system of these species, but this hypothesis could not be fully tested. Using whole genome sequences, we characterized the MAT locus of two C. austroafricana isolates and its sibling species, C. cubensis and C. deuterocubensis. A unique MAT1-2 idiomorph containing a truncated MAT1-1-1 gene, and a MAT1-1-2 gene, was identified in one isolate of C. austroafricana and a MAT1-1 idiomorph was found in the other. The presence of a single idiomorph in each isolate suggests that this fungus is heterothallic. Screening for MAT genes in 65 C. austroafricana isolates revealed a bias towards MAT1-2 idiomorphs suggesting a recent introduction in Eucalyptus species. Chrysoporthe cubensis and C. deuterocubensis are apparently homothallic since all the expected MAT genes were identified in their genome sequences. These findings were corroborated by the expression profiles of pheromone genes and their receptors, which conformed to the expected patterns observed in heterothallic and homothallic isolates. Long terminal repeat sequences (LTRs) and specifically retrotransposons were identified in the MAT locus of C. deuterocubensis and C. cubensis, indicating that the evolution of mating systems in Chrysoporthe species could be mediated by these elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call