Abstract

One approach for the formation of structures with complex geometries at the nanoscale is the step-by-step assembly. In this case, it is necessary to be able to estimate the time required to establish orientational equilibrium for a preformed pair of particles. This process is statistical in nature and depends on the mechanism of interaction of the ensemble with the external field. The orientation of particles in an alternating field is associated with certain relaxation times, which depend on the viscosity and temperature of the medium, as well as on the geometric structure of the samples. This paper proposes an mathematical model of the process of establishing the distribution of nanoparticles pairs orientations taking into account the friction force, thermal motion, and the orienting laser field. A statistical orientation distribution was obtained for CdTe particles in the field of moderate laser radiation, and the average time for establishing orientational equilibrium was estimated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.