Abstract

In high-rise buildings with large indoor and outdoor temperature difference, neglecting the effect of stack effect in smoke exhaust shafts may cause calculation error of the fluid network model. In this paper, the mathematical model of kitchen smoke exhaust system considering the influence of stack effect was put forward and it can be inserted different range hood sub-models. Compared with the results of six working conditions of the model without considering the stack effect, the error of the proposed model were reduced by 7.6%, 4.3%, 4.1%, 2.8%, 2.4%, and 2.1%. While the indoor and outdoor temperature difference varies from −5 °C to 49 °C, the effect of stack effect on the pressure in the flue and the flow rate for each user was studied for six operating rates s. The results show that under the combined effect of stack effect and flue resistance, the static pressure of the kitchen smoke exhaust system showed a low-high-low distribution, and the maximum static pressure in the flue moved toward the bottom with the increase of temperature difference. User flow rates exhibit a low-high-low-high distribution, with an increased flow rate in the bottom users and the largest flow rate in the top users.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.