Abstract

In Caenorhabditis elegans, the first zygotic transcription can be detected in the 4-cell stage C. elegans embryo, a little over 2h after fertilization. However, early development until the onset of gastrulation at approximately the 28-cell stage takes place normally even in the absence of zygotic transcription. Therefore, posttranslational and posttranscriptional regulation of the maternal proteins and mRNAs, respectively, that are loaded into the developing oocytes is sufficient to direct development prior to gastrulation. Protein phosphorylation is extensively used throughout the C. elegans maternal-to-zygotic transition (MZT): (1) for maternal protein activation, (2) for coordination of the meiotic and mitotic cell cycle, (3) to mark specific proteins for degradation, and/or (4) to switch the biochemical activity of specific proteins. Maternally loaded mRNAs are regulated primarily by a set of maternal RNA-binding proteins (RBPs), each of which binds to sometimes overlapping target sequences within the mRNA 3'UTRs and either promotes or inhibits translation. Most maternal transcripts are uniformly distributed throughout the embryo but specific transcripts are translated only in certain blastomeres. This control is achieved by the asymmetric distribution of the maternal RBPs, such that the blastomere-specific constellation of RBPs present, and their relative levels, determines the translational readout for their target transcripts. In certain well-studied cases, such as the specification of the sole endodermal precursor in the 8-cell embryo, the maternal transcripts and proteins along with their directly targeted zygotic genes have been identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call