Abstract
Lithium conditioning of plasma-facing surfaces (PFS) has been implemented in NSTX leading to improvements in plasma performance such as reduced D recycling and a reduction in edge localized modes (ELMS). Analysis of post-mortem tiles and offline experiments has identified interactions between Li-O-D and Li-C-D as chemical channels for deuterium retention in ATJ graphite. MAPP is the first in-vacuo surface analysis diagnostic directly integrated into a tokamak and capable of shot-to-shot chemical surface analysis of plasma material interactions (PMI). X-ray photoelectron spectroscopy (XPS) and low energy ion surface spectroscopy (LEISS) can show the chemical functionalities between D and lithiated graphite at both the near surface (5-10 nm) and top surface layer (0.3-0.6 nm) for XPS and LEISS respectively. MAPP will correlate plasma facing component (PFC) surface chemistry with plasma performance to lead the way to improved understanding of plasma-surface interactions and their effect on global plasma performance. Remote operation and data acquisition, integrated into NSTX diagnostic and interlocks, make MAPP an advanced PMI diagnostic with stringent engineering constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.