Abstract

A distance‐regular graph of diameter d has 2d intersection numbers that determine many properties of graph (e.g., its spectrum). We show that the first six coefficients of the matching polynomial of a distance‐regular graph can also be determined from its intersection array, and that this is the maximum number of coefficients so determined. Also, the converse is true for distance‐regular graphs of small diameter—that is, the intersection array of a distance‐regular graph of diameter 3 or less can be determined from the matching polynomial of the graph.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.