Abstract

The Paleocene carbonate succession in the Northeast Sirte Basin is composed of two shallowing-upward ramp cycles, where each cycle is under- and overlain by deeper-water, pelagic facies. A significant proportion of each of these two cycles is dolomitized. Petrographic study, supported by geochemical data (stoichiometry, stable isotopes, trace elements, and fluid inclusions), and integrated with broader tectono-sedimentary information, has provided the basis for interpreting these Paleocene dolomites. The use of this integrated approach in the study of dolomites suggests that, despite the much publicized uncertainties in interpreting geochemical analyses of ancient dolomites, the results of the Paleocene dolomites show that the geochemical characteristics are generally consistent with regional stratigraphic distribution and petrographic observations. Four distinct types of dolomite have been recognized in this part of the Sirte Basin. Based on the stratigraphic position and petrographic criteria, two of these types have a platformal setting and the other two are basinal. The platform varieties consist of dolomicrites and pervasive stratal dolomites. The dolomicrites, interpreted to be of syn-sedimentary origin, were probably a product of reflux of seawater, with elevated salinity, as suggested by palaeoenvironmental analysis and supported by geochemical evidence (the average S'80 value is −0.1‰ PDB; the average Sr content is 639 ppm). The pervasive dolomites were formed during the progradation of the platform sequences, and probably stabilized and augmented during shallow burial. A meteoric-marine mixing-zone is thought to have been the most likely process for the formation of these dolomites. This interpretation is supported by geochemical evidence (the average δ 18O is −2.4‰ PDB; the average Sr content is 72 ppm) combined with a favourable stratigraphic position. The most characteristic feature related to both mixing-zone and reflux dolomitization is the basinward movement of the dolomitizing fluids, which suggests that the formation of these platform dolomites was related to a lowstand system tract. The two basinal varieties comprise thick (over 300 m) basinal dolomudstones and fracture-filling, sparry dolomites. The stratigraphic position of the finely crystalline basinal dolomudstones, within very thick shale successions (as a result of being very close to the depocentre of the Sirte Basin) combined with geochemical evidence (the average δ 18O is −6.4‰ PDB), suggest that the dolomitizing fluids were basin-derived, with Mg 2+ released from dewatering through compaction of basinal shales. The occurrence of this type of dolomite provides one of the rare examples of large-scale dolomitization of thick, basinal sequences. Late diagenetic fracture-filling dolomites exhibit a structural control on their distribution. Geochemical evidence (including fluid inclusion analysis and the lightest oxygen isotopic signature of −7.3‰ PDB) suggests that highly saline formation brines were the solutions responsible for their formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.