Abstract

Abstract We constrained the progenitor masses for 169 supernova remnants (SNRs), eight historically observed supernovae (SNe), and the black hole formation candidate in NGC 6946, finding that they are consistent with originating from a standard initial mass function. Additionally, there were 16 remnants that showed no sign of nearby star formation consistent with a core-collapse SN, making them good Type Ia candidates. Using Hubble Space Telescope broadband imaging, we measured the stellar photometry of ACS/WFC fields in the F435W, F555W, F606W, and F814W filters, as well as WFC3/UVIS fields in F438W, F606W, and F814W. We then fitted this photometry with stellar evolutionary models to determine the ages of the young populations present at the positions of the SNRs and SNe. We then inferred a progenitor mass probability distribution from the fitted age distribution. For 37 SNRs, we tested how different filter combinations affected the inferred masses. We find that filters sensitive to Hα, [N ii], and [S ii] gas emission can bias mass estimates for remnants that rely on our technique. Using a Kolmogorov–Smirnov test analysis on our most reliable measurements, we find that the progenitor mass distribution is well matched by a power-law index of − 2.6 − 0.6 + 0.5 , which is consistent with a standard initial mass function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.