Abstract

In this article we discuss the Mass Transference Principle due to Beresnevich and Velani and survey several generalisations and variants, both deterministic and random. Using a Hausdorff measure analogue of the inhomogeneous Khintchine-Groshev Theorem, proved recently via an extension of the Mass Transference Principle to systems of linear forms, we give an alternative proof of a general inhomogeneous Jarn\'{\i}k-Besicovitch Theorem which was originally proved by Levesley. We additionally show that without monotonicity Levesley's theorem no longer holds in general. Thereafter, we discuss recent advances by Wang, Wu and Xu towards mass transference principles where one transitions from $\limsup$ sets defined by to $\limsup$ sets defined by rectangles (rather than from to balls as is the case in the original Mass Transference Principle). Furthermore, we consider mass transference principles for transitioning from rectangles to rectangles and extend known results using a slicing technique. We end this article with a brief survey of random analogues of the Mass Transference Principle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call