Abstract

Lignin, a cheap renewable natural polymer, can be used as a precursor for the production of carbon fibres, its conversion into which is significantly faster than that of polyacrylonitrile. Lignin can be fractionated in various solvents via dissolution to decrease its polydispersity. Fractions with a higher molecular weight distribution can then be used in solvent-based spinning technologies such as electrospinning. We selected several solvent systems according to the Hansen solubility theory and subsequently tested them for solubility and electro-spinability. The selected solvent systems were then successfully tested for use in the needleless electrospinning process due to their potential for mass production. The solutions used in the electrospinning process needed high concentrations of lignin, which led to a high degree of viscosity. Therefore, we measured the relaxation times and viskosity for selected solutions, a factor that plays a pivotal role in terms of the production of smooth fibres. Finally, these solutions were tested for electrospinning using alternating current. This technology brings a new possibility in mass production of lignin fibres due to its high productivity and ease of use. Such materials can be used in a number of applications such as batteries, supercapacitors or for the production of composite materials. They provide a cheap and renewable natural polymer source which can easily be transformed into a carbon nanofibrous layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.