Abstract

Measurements of neutron star masses and radii are instrumental for determining the equation of state of their interiors, understanding the dividing line between neutron stars and black holes, and for obtaining accurate statistics of source populations in the Galaxy. We report here on the measurement of the mass and radius of the neutron star in the low-mass X-ray binary KS 1731-260. The analysis of the spectroscopic data on multiple thermonuclear bursts yields well-constrained values for the apparent angular area and the Eddington flux of the source, both of which depend in a distinct way on the mass and radius of the neutron star. The binary KS 1731-260 is in the direction of the Galactic bulge, allowing a distance estimate based on the density of stars in that direction. Making use of the Han & Gould model, we determine the probability distribution over the distance to the source, which is peaked at 8 kpc. Combining these measurements, we place a strong upper bound on the radius of the neutron star, R <= 12 km, while confining its mass to M <= 1.8 M_sun.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.