Abstract

This study was conducted to determine the impact of diesel exhaust inhalation on the fetus. Seventy-two pregnant rats and 18 nonpregnant rats were divided into three groups: a group exposed to total diesel engine exhaust containing 5.63 mg/m(3) particulate matter, 4.10 ppm nitrogen dioxide, and 8.10 ppm nitrogen oxide; a group exposed to filtered exhaust without particulate matter; and a group exposed to clean air. The exposure period was from day 7 until day 20 of pregnancy. In addition, 15 pregnant rats were treated with aromatase inhibitors or testosterone to clarify the process by which diesel exhaust exerts its toxicity. The anogenital distance was significantly longer in male and female fetuses from both exhaust-exposed groups than in those of the control. Differentiation of the testis, ovary, and thymus was delayed and disturbed. Maternal testosterone and progesterone levels, which increased due to pregnancy whether or not the rats were exposed, were significantly higher and lower, respectively, in the pregnant rats exposed to total exhaust and filtered exhaust. The serum adrenocorticotropic hormone (ACTH) level and urinary excretion of 17-hydroxycorticosteroids (OHCS) did not differ among the pregnant groups. These results indicate that elevated testosterone did not result from elevated maternal adrenal function. The feto-placental-ovarian unit and inhibition of aromatase activity and synthesis caused by diesel exhaust inhalation might have played an essential role in the accumulation of testosterone. Since both exhaust-exposed groups showed almost the same reactions toward the inhalation, the gaseous phase must have included the relevant toxicants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call