Abstract

BackgroundTrypanosoma cruzi invades and replicates inside mammalian cells, which can lead to chronic Chagas disease in humans. Trypanosoma copemani infects Australian marsupials and recent investigations indicate it may be able to invade mammalian cells in vitro, similar to T. cruzi. Here, T. cruzi 10R26 strain (TcIIa) and two strains of T. copemani [genotype 1 (G1) and genotype 2 (G2)] were incubated with marsupial cells in vitro. Live-cell time-lapse and fluorescent microscopy, combined with high-resolution microscopy (transmission and scanning electron microscopy) were used to investigate surface interactions between parasites and mammalian cells.ResultsThe number of parasites invading cells was significantly higher in T. cruzi compared to either genotype of T. copemani, between which there was no significant difference. While capable of cellular invasion, T. copemani did not multiply in host cells in vitro as there was no increase in intracellular amastigotes over time and no release of new trypomastigotes from host cells, as observed in T. cruzi. Exposure of host cells to G2 trypomastigotes resulted in increased host cell membrane permeability within 24 h of infection, and host cell death/blebbing was also observed. G2 parasites also became embedded in the host cell membrane.ConclusionsTrypanosoma copemani is unlikely to have an obligate intracellular life-cycle like T. cruzi. However, T. copemani adversely affects cell health in vitro and should be investigated in vivo in infected host tissues to better understand this host-parasite relationship. Future research should focus on increasing understanding of the T. copemani life history and the genetic, physiological and ecological differences between different genotypes.

Highlights

  • Trypanosoma cruzi invades and replicates inside mammalian cells, which can lead to chronic Chagas disease in humans

  • Trypanosoma copemani is the only trypanosome from Australia that has been observed inside mammalian cells, and it has been implicated in the decline of an endangered marsupial species [20, 21]

  • Trypanosoma cruzi 10R26 strain (TcIIa) infects Potoroo kidney epithelial cells (PtK2) cells revealing a four day cell cycle The number of PtK2 cells infected with T. cruzi increased over time, it remained below 10% over five days (Fig. 1)

Read more

Summary

Introduction

Trypanosoma cruzi invades and replicates inside mammalian cells, which can lead to chronic Chagas disease in humans. Trypanosoma copemani infects Australian marsupials and recent investigations indicate it may be able to invade mammalian cells in vitro, similar to T. cruzi. The ability to invade cells, which leads to chronic infection with T. cruzi, has only been observed in a few species of trypanosomes. Trypanosoma copemani is the only trypanosome from Australia that has been observed inside mammalian cells, and it has been implicated in the decline of an endangered marsupial species [20, 21]. G2 was reported to have intracellular stages that resembled amastigotes in vitro in various immortalised mammalian cell lines [Vero (African green monkey kidney epithelial cells), L6 (Rattus norvegicus skeletal muscle cells), HCT8 (Homo sapiens colon cells) and THP1 (Homo sapiens leukemic monocyte)] with the highest infection rate observed in Vero cells [21]. The morphological form of T. copemani that is inside the host cell remains unconfirmed [21]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.