Abstract

This article introduces three parameters class for lifetime Poisson processes in the Marshall-Olkin transformation family that are increasing, bathtub and skewed. Some structural mathematical properties of the Marshall-Olkin Gompertz (MO-G) model were derived. The MO-G model parameters were established by maximum likelihood approach. The flexibility, efficiency, and behavior of the MO-G model estimators were examined through simulation. The empirical applicability, flexibility and proficiency of the MO-G model was scrutinized by a real-life dataset. The proposed MO-G model provides a better fit when compared to existing models in statistical literature and can serve as an alternative model to those appearing in modeling Poisson processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.