Abstract

ABSTRACTDetailed studies of a new, complete Marl Slate core in South Yorkshire have provided information on isotopic (δ13C, δ18O, δ34S) and geochemical variations (trace elements and C/S ratio) which enable the formulation of a model for carbonate and sulphide precipitation in the Late Permian Zechstein Sea. Calcite and dolomite are intimately associated; the fine lamination, organic character and absence of benthos in the sediments are indicative of anoxic conditions. Lithologically the core can be divided into a lower, predominantly sapropelic Marl Slate (2 m) and an upper Transition Zone (0·65 m) of alternating sapropel and calcite‐rich and dolomite‐rich carbonates.C/S ratios are 2·22 for the Marl Slate and 1·72 for the Transition Zone respectively, both characteristic of anoxic environments. δ18O in the carbonates shows a large and systematic variation closely mirrored by variations in calcite/dolomite ratio. The results suggest a fractionation factor equivalent to a depletion of 3·8% for 18O and 1·5% for 13C in calcite. The δ34S values of pyrite are isotopically light (mean value = ‐ 32·7%) suggesting a fractionation factor for the Marl Slate of almost 44%, typical of anoxic basins.The results are related to stratification in the early Zechstein Sea. Calcite was precipitated in oxic upper layers above the halocline. Below the oxic/anoxic boundary framboidal pyrite was precipitated, resulting in lower sulphate concentration and elevated Mg/Ca ratio (due to calcite precipitation). As a result of this, dolomite formation occurred below the oxic/anoxic interface, within the anoxic water column and in bottom sediments. Variations in calcite/dolomite ratios, and isotopic variations, are thus explained by fluctuations in the relative level of the oxic/anoxic boundary in the Zechstein Sea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.