Abstract

We propose to use a special type of generative neural networks - a Restricted Boltzmann Machine (RBM) - to build a powerful generator of synthetic market data that can replicate the probability distribution of the original market data. An RBM constructed with stochastic binary activation units in both the hidden and the visible layers (Bernoulli RBM) can learn complex dependence structures while avoiding overfitting. In this paper we consider an efficient data transformation and sampling approach that allows us to operate Bernoulli RBM on real-valued data sets and control the degree of autocorrelation and non-stationarity in the generated time series.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.