Abstract
Neutral methyl- and acyl-palladium chloro complexes containing pyridylthioether ancillary ligands (R′NSR) (R′=H, Me, Cl; R=Me, Et, i-Pr, t-Bu, Ph) have been synthesised and characterised by elemental analysis and spectroscopic methods. The reactivity of these complexes toward allene (allene=DMA=1,1-dimethylpropadiene; TMA=1,1,3,3-tetramethylpropadiene) insertion into the palladium–carbon bond has been studied by 1H-NMR and UV–vis techniques. The rate of reaction appears to be strongly influenced by the steric and electronic properties of the ancillary ligand. The distortion induced by the substituent R′ in position 6 of the pyridine ring on the main coordination plane of the substrate (allowed by sulphur sp 3 hybridisation) renders the substrate itself more prone to nucleophilic attack by the allene. The rate of allene insertion can further be enhanced by lowering the basicity of the chelating atoms in the NS moiety which results in an increase of electrophilicity of the palladium core, so that the rate constants measured in the case of the complexes containing the ligand 6-chloro-2-phenylthiomethylpyridine (ClNSPh) are by far the greatest observed so far for similar reactions. Furthermore, on the basis of the indications emerging from the exhaustive study on the behaviour of all the related pyridylthioether methyl complexes, an associative asynchronous bond making mechanism for the rate determining nucleophilic attack by allene is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.