Abstract

In this paper, we propose a method for testing absolutely regular and possibly nonstationary nonlinear time-series, with application to general AR-ARCH models. Our test statistic is based on a marked empirical process of residuals which is shown to converge to a Gaussian process with respect to the Skohorod topology. This testing procedure was first introduced by Stute [Nonparametric model checks for regression, Ann. Statist. 25 (1997), pp. 613–641] and then widely developed by Ngatchou-Wandji [Weak convergence of some marked empirical processes: Application to testing heteroscedasticity, J. Nonparametr. Stat. 14 (2002), pp. 325–339; Checking nonlinear heteroscedastic time series models, J. Statist. Plann. Inference 133 (2005), pp. 33–68; Local power of a Cramer-von Mises type test for parametric autoregressive models of order one, Compt. Math. Appl. 56(4) (2008), pp. 918–929] under more general conditions. Applications to general AR-ARCH models are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.