Abstract

Prostate cancer is metastatic cancer and is the second leading cause of cancer-related death in men. It is needed to develop more effective treatment for metastatic prostate cancer. The present study investigates whether the novel factor 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA), which was isolated from marine oyster, suppresses the activity of metastatic human prostate cancer PC-3 or DU-145 cells. Culture of DHMBA (1 or 10 µM) suppressed colony formation and growth of PC-3 or DU-145 cells in vitro. Suppressive effects of DHMBA on cell proliferation were not occurred by culturing with intracellular signaling inhibitors. Mechanistically, DHMBA (10 µM) reduced the levels of key proteins linked to promotion of cell growth, including Ras, PI3K, Akt, MAPK, and mTOR in PC-3 cells. Interestingly, DHMBA increased the levels of cancer suppressor p53, p21, Rb, and regucalcin. Moreover, culture of DHMBA simulated the death of PC-3 and DU-145 cells. This effect was implicated to caspase-3 activation in cells. Interestingly, the effects of DHMBA on cell proliferation and death were blocked by culturing with an inhibitor of aryl hydrocarbon receptor linked to transcriptional regulation. Furthermore, culture of DHMBA inhibited production of reactive oxygen species in PC-3 or DU-145 cells. Of note, DHMBA blocked migration and invasion by diminishing their related protein levels, including NF-κB 65, caveolin-1 and integrin β1. The novel marine factor DHMBA was demonstrated to suppress metastatic prostate cancer cells via targeting diverse signaling pathways. This study may provide a new strategy for prostate cancer therapy with DHMBA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call