Abstract

The distribution of dissolved iodate and iodide has been determined in two anoxic basins, the Black Sea and the Cariaco Trench; and the oxic Venezuela Basin which serves as a comparison for normal oceanic conditions. In normal oceanic waters, iodate is the predominant species; its concentration is lowest at the surface ( ca. 0.3 μM) and increases with depth to ca. 0.5 μM. In contrast, the iodide concentration shows maximum values in surface waters and rapidly decreases to <0.01 μM below the euphotic zone. In anoxic basins, the reduced pE reverses this trend. The concentration of iodide increases rapidly in the oxygen-sulfide mixing zone from 0.02 to 0.46 μM, and 0.01 to 0.43 μM, in the Cariaco Trench and the Black Sea, respectively. The iodate concentration, meanwhile, decreases to zero. The total iodine to salinity ratio is lower in the surface waters with a range of 7.3–12.1 nmoles/g suggesting a possible depletion by organisms. In the anoxic basins, a maximum in this ratio is observed just above the oxygen-sulfide boundary (15–17 nmoles/g) and is indicative of particle dissolution in a strong pycnocline. In the anoxic zone of the Cariaco Trench, the ratio is constant at 12.3 nmoles/g, whereas in the Black Sea, it increases with depth from 10.0 to 19.3 nmoles/g, suggesting a possible flux of iodide from the bottom sediments. By considering the distribution of iodate and iodide in oxic and anoxic basins, the lower limit of the pE of the oxic ocean is estimated to be 10.7, given our present analytical capability. Thermodynamic considerations further suggest that the iodide-iodate couple is a poor indicator for the pE of the oceans with a limited usable range of 10.0–10.7.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call