Abstract

The generalized likelihood ratio (GLR) test is a widely used method for detecting abrupt changes in linear systems and signals. In this paper the marginalized likelihood ratio (MLR) test is introduced for eliminating three shortcomings of GLR while preserving its applicability and generality. First, the need for a user-chosen threshold is eliminated in MLR. Second, the noise levels need not be known exactly and may even change over time, which means that MLR is robust. Finally, a very efficient exact implementation with linear in time complexity for batch-wise data processing is developed. This should be compared to the quadratic in time complexity of the exact GLR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.