Abstract

The genetic underpinnings of traits are rarely simple. Most traits of interest are instead the product of multiple genes acting in concert to determine the phenotype. This is particularly true for behavioral traits, like dispersal. Our investigation focuses on the genetic architecture of dispersal tendency in the red flour beetle, Tribolium castaneum. We used artificial selection to generate lines with either high or low dispersal tendency. Our populations responded quickly in the first generations of selection and almost all replicates had higher dispersal tendency in males than in females. These selection lines were used to create a total of 6 additional lines: F1 and reciprocal F1, as well as 4 types of backcrosses. We estimated the composite genetic effects that contribute to divergence in dispersal tendency among lines using line cross-analysis. We found variation in the dispersal tendency of our lines was best explained by autosomal additive and 3 epistatic components. Our results indicate that dispersal tendency is heritable, but much of the divergence in our selection lines was due to epistatic effects. These results are consistent with other life-history traits that are predicted to maintain more epistatic variance than additive variance and highlight the potential for epistatic variation to act as an adaptive reserve that may become visible to selection when a population is subdivided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.