Abstract

Carbonation reactions in portland cement grout examined in the laboratory suggest high attenuation of 14 C in cementitious barriers for low- and intermediate-level radioactive waste repositories. Natural cementitious environments at two sites, Maqarin and Daba, in Jordan offer evidence that extensive carbonation can occur at field scales under both unsaturated and saturated conditions. Here, in situ spontaneous combustion of bituminous marl in the past has led to calcination and formation of calcium/silica/alumina-oxides typical of portland cement clinker. Retrograde alteration within these metamorphic zones began with hydration and precipitation of portlandite as a rock forming mineral along with ettringite, thaumasite, and other calcium-silica-hydrate-like phases. Metamorphism was a relatively recent event at the Maqarin site. Here hyperalkaline groundwater discharge from the alteration zones with two distinct geochemical facies: (a) higher TDS Ca K Na OH SO 4 groundwaters (pH > 12.5) apparently represent the earliest discharge following hydration, and (b) lower TDS Ca OH groundwaters (pH 12.0 to 12.4) which appear to be later-stage leachates from the alteration zone. Subsequent carbonation has precipitated secondary calcite observed in the Eastern alteration zone. In central Jordan, travertines associated with the Daba marble record a third phase of porewater discharge where silica has been remobilized during carbonation of CSH-like phases. The unique geochemical features of the Maqarin site were examined to evaluate the validity of using it as a potential natural analogue for cement grout carbonation reactions studied under laboratory conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.