Abstract

A series of experiments was conducted in the 0.3-meter diameter circulating fluidized bed test facility at the U.S. Department of Energy’s National Energy Technology Laboratory (NETL). Cork, the bed material used in this study, is a coarse, light material, with a particle density of 189 kg/m3 and a mean diameter of 1007 μm. Fluidizing this material in ambient air provides approximately the same gas to solids density ratio as coal and coal char in a pressurized gasifier. Furthermore, the density ratio of cork to air under ambient conditions is similar to the density ratio of coal to gas at the gasification and pressurized fluidized bed combustion environment. The purpose of this study is to generate reliable data to validate the mathematical models currently under development at NETL. Using such coarse, light material can greatly facilitate the computation of these mathematical models. This paper presents and discusses data for the operating flow regimes of dilute-phase, fast-fluidization, and dense-phase transport by varying the solid flux (Gs) at a constant gas velocity (Ug). Data are presented by mapping the flow regime for coarse cork particles in a ΔP/ ΔL-Gs-Ug plot. The coarse cork particles exhibited different behavior than the measurements on heavier materials found in published literature, such as alumina, sand, FCC, and silica gel. Stable operation can be obtained at a fixed riser gas velocity that is higher than the transport velocity (e.g. at Ug = 3.2 m/sec), even though the riser is operating within the fast fluidization flow regime. Depending upon the solid influx, the riser can also be operated at dilute-phase or dense-phase flow regimes. Experimental data were compared to empirical correlations in published literature for flow regime boundaries, and solid fractions in the upper-dilute and the lower-dense regions of a fast fluidization flow regime. Comparisons of measured data show rather poor agreement with these empirical correlations. Xu et al. (2000) have observed this lack of agreement in their study of the effect of bed diameter on the saturation carrying capacity. The basis of empirical correlations depends on bed diameter and particle type, and are generally not well understood.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call