Abstract
Glioblastoma (GBM) stem cells (GSCs) are responsible for GBM initiation, progression, infiltration, standard therapy resistance, and recurrence. However, the mechanisms underlying GSC invasion remain incompletely understood. Using public single-cell RNA-Seq data, we identified MAP3K1 as a master regulator of infiltrative GSCs through c-JUN signaling regulation. MAP3K1 knockdown significantly decreased GSC invasion capacity, proliferation, and stemness in vitro. Moreover, in an orthotopic xenograft model, knockdown of MAP3K1 prominently suppressed GSC infiltration along the corpus callosum and tumor progression and prolonged mouse survival. Mechanistically, MAP3K1 regulates GSC invasion through phosphorylation of downstream c-JUN at serine 63 and 73, as confirmed using the CPTAC phosphoproteome dataset. Furthermore, the c-JUN inhibitor JNK-IN-8 significantly decreased GSC invasion, proliferation, and stemness. Taken together, our study demonstrates that MAP3K1 regulates GSC invasion and tumor progression via activation of c-JUN signaling and indicates that the MAP3K1/c-JUN signaling axis is a therapeutic target for infiltrative GBM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.