Abstract

The mechanism that allows the axoneme of eukaryotic cilia and flagella to produce both helical and planar beating is an enduring puzzle. The nine outer doublets of eukaryotic cilia and flagella are arranged in a circle. Therefore, each doublet pair with its associated dynein motors, should produce torque to bend the flagellum in a different direction. Sequential activation of each doublet pair should, therefore result in a helical bending wave. In reality, most cilia and flagella have a well‐defined bending plane and many exhibit an almost perfectly flat (planar) beating pattern. In this analysis we examine the physics that governs flagellar bending, and arrive at two distinct possibilities that could explain the mechanism of planar beating. Of these, the mechanism with the best observational support is that the flagellum behaves as two ribbons of doublets interacting with a central partition. We also examine the physics of torsion in flagella and conclude that torsion could play a role in transitioning from a planar to a helical beating modality in long flagella. Lastly, we suggest some tests that would provide theoretical and/or experimental evaluation of our proposals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.