Abstract

A diverse set of 100 chalcogen-bonded complexes comprising neutral, cationic, anionic, divalent, and double bonded chalcogens has been investigated using ωB97X-D/aug-cc-pVTZ to determine geometries, binding energies, electron and energy density distributions, difference density distributions, vibrational frequencies, local stretching force constants, and associated bond strength orders. The accuracy of ωB97X-D was accessed by CCSD(T)/aug-cc-pVTZ calculations of a subset of 12 complexes and by the CCSD(T)/aug-cc-pVTZ //ωB97X-D binding energies of 95 complexes. Most of the weak chalcogen bonds can be rationalized on the basis of electrostatic contributions, but as the bond becomes stronger, covalent contributions can assume a primary role in the strength and geometry of the complexes. Covalency in chalcogen bonds involves the charge transfer from a lone pair orbital of a Lewis base into the σ* orbital of a divalent chalcogen or a π* orbital of a double bonded chalcogen. We describe for the first time a symmetric chalcogen-bonded homodimer stabilized by a charge transfer from a lone pair orbital into a π* orbital. New polymeric materials based on chalcogen bonds should take advantage of the extra stabilization granted by multiple chalcogen bonds, as is shown for 1,2,5-telluradiazole dimers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.