Abstract

Ubiquitin modification plays important roles in many cellular processes that are fundamental for vertebrate embryo development, such as cell division, differentiation, and migration. Aberrant function or deregulation of ubiquitination enzymes can cause developmental disorders, cancer progression, and neurodegenerative diseases in humans. RING finger protein 220 (RNF220) is an evolutionarily conserved RING-type ubiquitin E3 ligase. Recent studies have revealed the roles and mechanisms of RNF220 and its partner protein, zinc finger C4H2-type containing protein (ZC4H2), in embryonic development and human diseases. Using mouse and zebrafish models, it has been shown that RNF220 regulates sonic hedgehog (Shh) signaling via Gli and embryonic ectoderm development (EED), a polycomb repressive complex 2 (PRC2) component, during ventral neural patterning and cerebellum development. In addition, RNF220 also regulates the development and functions of central noradrenergic and motor neurons in mice. By stabilizing β-catenin and signal transducer and activator of transcription 1 (STAT1), RNF220 is also involved in Wnt and interferon (IFN)-STAT1 signaling and thus the regulation of tumorigenesis and immune response, respectively. In humans, both RNF220 and ZC4H2 mutations have been reported to be associated with diseases accompanied by complicated neural defects. In this review, we summarize the current knowledge of RNF220 with special emphasis on its roles and mechanisms of action in signal transduction, vertebrate neural development, and related human disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call