Abstract
The mantle transition zone (MTZ) of the Earth lies between 410 and ∼1000 km in depth and has a key role in mantle convection processes. In particular, the discontinuity at 660 km and its associated endothermic mineralogical transformation can slow or inhibit the passage of matter between the upper and lower mantle. The MTZ thus acts as a boundary layer within the mantle. The depth variations of radial and azimuthal seismic anisotropies enable the detection of boundary layers within the mantle. However, the 3D imaging is difficult due to the lack of sensitivity of surface waves of fundamental modes, and the poor global coverage of this depth range by body-wave data. We present a new 3D general anisotropy model (both radial and azimuthal anisotropies) of the mantle down to 1200 km in depth using surface-wave overtone datasets. We find that there is little seismic anisotropy in most of the MTZ, except below subduction zones around the Pacific Ocean and, more surprisingly, in a large area beneath eastern Eurasia where the Pacific subducting plate is stagnant. Seismic anisotropy is usually associated with intense deformation processes but also possibly to water transportation or to fine layering. This significant anisotropy in this part of MTZ might reveal a large water ‘reservoir’ associated with hydrous minerals or a strong stratification. It reflects a complex history beneath central Asia, where the Tethys, Izanagi and Pacific plates appear to have strongly interacted during the last 100 My, having subducted in orthogonal directions under the Asian continent, with the Tethys plate descending into the lower mantle, and the Izanagi plate remaining stagnant in the MTZ. The Asian continent is the only region in the world where subducting slabs originating from different plates can interact. This unique slab distribution might explain why some plates descend while others remain in the lower transition zone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.