Abstract

The mantle convection model with phase transitions, non-Newtonian viscosity, and internal heat sources is calculated for two-dimensional (2D) Cartesian geometry. The temperature dependence of viscosity is described by the Arrhenius law with a viscosity step of 50 at the boundary between the upper and lower mantle. The viscosity in the model ranges within 4.5 orders of magnitude. The use of the non-Newtonian rheology enabled us to model the processes of softening in the zone of bending and subduction of the oceanic plates. The yield stress in the model is assumed to be 50 MPa. Based on the obtained model, the structure of the mantle flows and the spatial fields of the stresses σ xz and σ xx in the Earth’s mantle are studied. The model demonstrates a stepwise migration of the subduction zones and reveals the sharp changes in the stress fields depending on the stage of the slab detachment. In contrast to the previous model (Bobrov and Baranov, 2014), the self-consistent appearance of the rigid moving lithospheric plates on the surface is observed. Here, the intense flows in the upper mantle cause the drift and bending of the top segments of the slabs and the displacement of the plumes. It is established that when the upwelling plume intersects the boundary between the lower and upper mantle, it assumes a characteristic two-level structure: in the upper mantle, the ascending jet of the mantle material gets thinner, whereas its velocity increases. This effect is caused by the jump in the viscosity at the boundary and is enhanced by the effect of the endothermic phase boundary which impedes the penetration of the plume material from the lower mantle to the upper mantle. The values and distribution of the shear stresses σ xz and superlithostatic horizontal stresses σ xx are calculated. In the model area of the subducting slabs the stresses are 60–80 MPa, which is by about an order of magnitude higher than in the other mantle regions. The character of the stress fields in the transition region of the phase boundaries and viscosity step by the plumes and slabs is analyzed. It is established that the viscosity step and endothermic phase boundary at a depth of 660 km induce heterogeneities in the stress fields at the upper/lower mantle boundary. With the assumed model parameters, the exothermic phase transition at 410 km barely affects the stress fields. The slab regions manifest themselves in the stress fields much stronger than the plume regions. This numerically demonstrates that it is the slabs, not the plumes that are the main drivers of the convection. The plumes partly drive the convection and are partly passively involved into the convection stirred by the sinking slabs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call