Abstract

Although skeletal muscle thick filaments have been extensively studied, information on the structure of cardiac thick filaments is limited. Since cardiac muscle differs in many physiological properties from skeletal muscle it is important to elucidate the structure of the cardiac thick filament. The structure of isolated and negatively stained rabbit cardiac thick filaments has been analyzed from computed Fourier transforms and image analysis. The transforms are detailed, showing a strong set of layer lines corresponding to a 42.9 nm quasi-helical repeat. The presence of relatively strong “forbidden” meridional reflections not expected from ideal helical symmetry on the second, fourth, fifth, seventh, eighth, and tenth layer lines suggest that the crossbridge array is perturbed from ideal helical symmetry. Analysis of the phase differences for the primary reflections on the first layer line of transforms from 15 filaments showed an average difference of 170°, close to the value of 180° expected for an odd-stranded structure. Computer-filtered images of the isolated thick filaments unequivocally demonstrate a three-stranded arrangement of the crossbridges on the filaments and provide evidence that the crossbridge arrangement is axially perturbed from ideal helical symmetry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call