Abstract

Maladaptive cardiac hypertrophy can progress to congestive heart failure, a leading cause of morbidity and mortality in the United States. A better understanding of the intracellular signal transduction network that controls myocyte cell growth may suggest new therapeutic directions. mAKAP is a scaffold protein that has recently been shown to coordinate signal transduction enzymes important for cytokine-induced cardiac hypertrophy. We now extend this observation and show mAKAP is important for adrenergic-mediated hypertrophy. One function of the mAKAP complex is to facilitate cAMP-dependent protein kinase A-catalyzed phosphorylation of the ryanodine receptor Ca2+-release channel. Experiments utilizing inhibition of the ryanodine receptor, RNA interference of mAKAP expression and replacement of endogenous mAKAP with a mutant form that does not bind to protein kinase A demonstrate that the mAKAP complex contributes to pro-hypertrophic signaling. Further, we show that calcineurin Abeta associates with mAKAP and that the formation of the mAKAP complex is required for the full activation of the pro-hypertrophic transcription factor NFATc. These data reveal a novel function of the mAKAP complex involving the integration of cAMP and Ca2+ signals that promote myocyte hypertrophy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.