Abstract

Background/objectivesObesity decreases the secretion of SARS-CoV-2-specific IgG antibodies in the blood of COVID-19 patients. How obesity impacts the quality of the antibodies secreted, however, is not understood. Therefore, the objective of this study is to evaluate the presence of neutralizing versus autoimmune antibodies in COVID-19 patients with obesity.Subjects/methodsThirty serum samples from individuals who tested positive for SARS-CoV-2 infection by RT-PCR were collected from inpatient and outpatient settings. Of these, 15 were lean (BMI < 25) and 15 were obese (BMI ≥ 30). Control serum samples were from 30 uninfected individuals, age-, gender-, and BMI-matched, recruited before the current pandemic. Neutralizing and autoimmune antibodies were measured by ELISA. IgG autoimmune antibodies were specific for malondialdehyde (MDA), a marker of oxidative stress and lipid peroxidation, and for adipocyte-derived protein antigens (AD), markers of virus-induced cell death in the obese adipose tissue.ResultsSARS-CoV-2 infection induces neutralizing antibodies in all lean but only in few obese COVID-19 patients. SARS-CoV-2 infection also induces anti-MDA and anti-AD autoimmune antibodies more in lean than in obese patients as compared to uninfected controls. Serum levels of these autoimmune antibodies, however, are always higher in obese versus lean COVID-19 patients. Moreover, because the autoimmune antibodies found in serum samples of COVID-19 patients have been correlated with serum levels of C-reactive protein (CRP), a general marker of inflammation, we also evaluated the association of anti-MDA and anti-AD antibodies with serum CRP and found a positive association between CRP and autoimmune antibodies.ConclusionsOur results highlight the importance of evaluating the quality of the antibody response in COVID-19 patients with obesity, particularly the presence of autoimmune antibodies, and identify biomarkers of self-tolerance breakdown. This is crucial to protect this vulnerable population at higher risk of responding poorly to infection with SARS-CoV-2 than lean controls.

Highlights

  • The novel single-stranded RNA coronavirus SARS-CoV-2 emerged in the last months of 2019, caused the worldwide coronavirus disease 2019 (COVID-19) pandemic, and was responsible for different clinical manifestations ranging from mild disease to severe respiratory tract infections, multiorgan failure, and death

  • Results show significantly lower levels of Spike-specific immunoglobulin G (IgG) antibodies in obese versus lean COVID-19 patients, confirming our published findings that Spike-specific IgG antibodies in serum are negatively associated with Body Mass Index (BMI) in COVID-19 patients [19]

  • Spikespecific IgG antibodies were detected at extremely low levels in serum samples isolated from uninfected lean and obese age, gender, and BMI-matched participants recruited before the pandemic

Read more

Summary

Introduction

The novel single-stranded RNA coronavirus SARS-CoV-2 (severe acute respiratory syndrome corona virus-2) emerged in the last months of 2019, caused the worldwide coronavirus disease 2019 (COVID-19) pandemic, and was responsible for different clinical manifestations ranging from mild disease to severe respiratory tract infections, multiorgan failure, and death. Neutralizing antibodies generated against the Spike glycoprotein of the SARS-CoV-1 in the 2002–2003 pandemic have shown efficacy in protecting from severe disease [5]. During the current pandemic, it has been shown that neutralizing antibodies against the Spike glycoprotein of SARS-CoV-2, found in plasma from convalescent COVID-19 patients, induced fast recovery when transfused into critically ill patients [6,7,8]

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call