Abstract
Doxorubicin (adriamycin) is a highly effective cancer chemotherapeutic drug but its clinical utility is limited by its cardiotoxicity. Doxorubicinol, the major metabolite of doxorubicin, is up to 10 times more potent than doxorubicin at inhibiting isometric contraction of the papillary muscle isolated from the right ventricle of rabbit heart. Doxorubicinol also increases resting tension of isolated cardiac muscle indicative of incomplete relaxation between contractions, a characteristic of doxorubicinol but not of doxorubicin. This study assesses the effect(s) of doxorubicinol on a variety of ion pumps which may explain, in part, the action of the metabolite in the intact muscle. We find the doxorubicinol is a potent inhibitor (IC50 less than 5 micrograms/ml) of calcium-stimulated ATPase activity of sarcoplasmic reticulum from canine heart and rabbit skeletal muscle. At comparable levels, doxorubicinol is also a potent inhibitor of (Na + K)-ATPase of cardiac sarcolemma and the Mg-dependent ATPase activity referable to the F0F1 proton pump of mitochondria. For each of these ion pumps, doxorubicinol is at least 80 times more potent an inhibitor than doxorubicin. Doxorubicinol, between 10 and 50 micrograms/ml, increases resting tension up to 4-fold in isolated papillary muscles cyclically contracting at 30 times/min. Resting stress is relatively insensitive to doxorubicin. Thus, doxorubicinol is a potent inhibitor of several key cationic pumps that directly or indirectly regulate cell calcium and inhibits relaxation in the isolated fiber preparation. These observations add a new dimension to understanding the cardiotoxicity of doxorubicin.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.