Abstract

The metabolism of the anticonvulsant drug mephenytoin exhibits a genetic polymorphism in humans, with the poor metabolizer trait being inherited in an autosomal recessive fashion. There are large interracial differences in the frequency of the poor metabolizer phenotype, with Oriental populations having a 5-fold greater frequency compared to Caucasians. Impaired metabolism of mephenytoin and a number of other currently used drugs results from a defect in a cytochrome P450 enzyme recently identified as CYP2C19. Attempts over the past decade to define the molecular genetic basis of the polymorphism have, however, been unsuccessful. We now report that the principal defect in poor metabolizers is a single base pair (G-->A) mutation in exon 5 of CYP2C19, which creates an aberrant splice site. This change alters the reading frame of the mRNA starting with amino acid 215 and produces a premature stop codon 20 amino acids downstream, which results in a truncated, non-functional protein. We further demonstrate that 7/10 Caucasian and 10/17 Japanese poor metabolizers are homozygous for this defect, indicating that this is the major defect responsible for the poor metabolizer phenotype. Finally, the familial inheritance of the deficient allele was found to be concordant with that of the phenotypic trait.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.