Abstract

The major core protein of cytoplasmic messenger ribonucleoprotein particles (p50) has been shown previously to inhibit protein synthesis in vitro and in vivo. Furthermore, p50 is highly homologous to the Y-box-binding transcription factor family of proteins, binds DNA containing the Y-box motif, and thus may have a dual function in cells as a regulator of both transcription and translation. Here we show that binding or removal of p50 from rabbit reticulocyte lysate by monospecific antibodies to p50 strongly inhibits translation of endogenous and exogenous globin mRNAs as well as prokaryotic beta-galactosidase mRNA in a rabbit reticulocyte cell-free system. Thus, depending on the conditions, p50 not only may act as a translational repressor, but may also be required for protein synthesis. Translation inhibition with anti-p50 antibodies is not a result of mRNA degradation or its functional inactivation. The inhibition does not change the ribosome transit time, and therefore, it does not affect elongation/termination of polypeptide chains. The inhibition with anti-p50 antibodies is followed by a decay of polysomes and accumulation of the 48 S preinitiation complex. These results suggest that p50 participates in initiation of protein biosynthesis. Although uninvolved in the formation of the 48 S preinitiation complex, p50 is necessary either for attachment of the 60 S ribosomal subunit or for previous 5'-untranslated region scanning by the 43 S preinitiation complex.

Highlights

  • Regulation of gene expression in eukaryotes often involves modulating the rate of initiation of protein synthesis

  • In a detailed study of the effect of p50 on exogenous mRNA translation in reticulocyte lysates, we showed that p50 inhibits mRNA translation when added at a high p50/mRNA ratio

  • Cell-free Translation Systems Deficient in p50 Do Not Synthesize Proteins Efficiently—To verify the suggestion that p50 may play a positive role in protein biosynthesis, we sought to deplete p50 activity in reticulocyte lysates

Read more

Summary

Introduction

Regulation of gene expression in eukaryotes often involves modulating the rate of initiation of protein synthesis (for reviews, see Refs. 1–3). We show that binding or removal of p50 from rabbit reticulocyte lysate by monospecific antibodies to p50 strongly inhibits translation of endogenous and exogenous globin mRNAs as well as prokaryotic ␤-galactosidase mRNA in a rabbit reticulocyte cell-free system.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.