Abstract

Shoot growth depends on meristems, pools of stem cells that are maintained by a negative feedback loop between the CLAVATA pathway and the WUSCHEL homeobox gene. CLAVATA signalling involves a secreted peptide, CLAVATA3 (CLV3), and its perception by cell surface leucine-rich repeat (LRR) receptors, including the CLV1 receptor kinase and a LRR receptor-like protein, CLV2 (ref. 4). However, the signalling mechanisms downstream of these receptors are poorly understood, especially for LRR receptor-like proteins, which lack a signalling domain. Here we show that maize COMPACT PLANT2 (CT2) encodes the predicted α-subunit (Gα) of a heterotrimeric GTP binding protein. Maize ct2 phenotypes resemble Arabidopsis thaliana clavata mutants, and genetic, biochemical and functional assays indicate that CT2/Gα transmits a stem-cell-restrictive signal from a CLAVATA LRR receptor, suggesting a new function for Gα signalling in plants. Heterotrimeric GTP-binding proteins are membrane-associated molecular switches that are commonly activated by ligand binding to an associated seven-pass transmembrane (7TM) G-protein-coupled receptor (GPCR). Recent studies have questioned the idea that plant heterotrimeric G proteins interact with canonical GPCRs, and our findings suggest that single pass transmembrane receptors act as GPCRs in plants, challenging the dogma that GPCRs are exclusively 7TM proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.