Abstract

Manganese (Mn) toxicity is an important limiting factor for crop production in acidic soils. The basic helix-loop-helix (bHLH) transcription factors are involved in a variety of physiological processes. However, whether the bHLHs are involved in excess Mn stress response is largely unknown. Here, we report the functional characterization of ZmbHLH105 isolated from maize (Zea mays). The transcript levels of ZmbHLH105 were higher in leaves, and were markedly up-regulated under excess Mn stress in maize. ZmbHLH105 was localized in the nucleus with transactivation activity. Ectopic expression of ZmbHLH105 enhanced Mn tolerance in Saccharomyces cerevisiae cells. ZmbHLH105-overexpressing (OE) plants showed improved excess Mn tolerance in transgenic tobacco. The stress-tolerant phenotypes of these OE tobacco lines were accompanied by increases of key antioxidant enzyme activities, but decreases of reactive oxygen species (ROS) accumulations. Importantly, the OE plants had less increases than the wild-type in toxic Mn accumulation. Moreover, the transcript levels of Mn/Fe-related transporters in the OE lines displayed remarkable decreases compared with the wild-type under Mn stress, suggesting that ZmbHLH105 reduced Mn accumulation in plants largely by repressing expression of Mn/Fe-regulated transporter genes. Taken together, these results indicate that ZmbHLH105 confers improved Mn stress tolerance possibly by regulating antioxidant machinery-mediated ROS scavenging and expression of Mn/Fe-related transporters in plants. ZmbHLH105 could be exploited for developing drought-tolerant maize varieties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.