Abstract

Models of the maintenance of transposable elements in randomly mating host populations are reviewed. It is shown that the data on the distribution of copy numbers between individuals are largely concordant with what is expected on the basis of the Mendelian transmission of elements. The role of regulation of rates of transposition, and of various modes of natural selection, in maintaining an equilibrium in copy numbers in the face of transpositional increase in copy number is discussed. Tests for the role of selection against insertional mutations and against chromosome rearrangements induced by exchange between homologous elements located at nonhomologous chromosome locations are discussed. Reasons for expecting elements to accumulate in chromosome regions where crossing over is restricted are discussed, and data suggesting the existence of such an effect are described. Theory and data on the probability distribution of element frequencies at individual chromosomal sites are described. It is concluded that the available population data are consistent with the notion that element abundances are largely controlled by the interaction of transpositional increase in copy number with opposing forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.