Abstract

Supergenes, regions of the genome with suppressed recombination between sets of functional mutations, contribute to the evolution of complex phenotypes in diverse systems. Excluding sex chromosomes, most supergenes discovered so far appear to be young, being found in one species or a few closely related species. Here, we investigate how a chromosome harbouring an ancient supergene has evolved over about 30million years (Ma). The Formica supergene underlies variation in colony queen number in at least five species. We expand previous analyses of sequence divergence on this chromosome to encompass about 90species spanning the Formica phylogeny. Within the nonrecombining region, the gene knockout contains 22single nucleotide polymorphisms (SNPs) that are consistently differentiated between two alternative supergene haplotypes in divergent European Formica species, and we show that these same SNPs are present in most Formica clades. In these clades, including an early diverging Nearctic Formica clade, individuals with alternative genotypes at knockout also have higher differentiation in other portions of this chromosome. We identify hotspots of SNPs along this chromosome that are present in multiple Formica clades to detect genes that may have contributed to the emergence and maintenance of the genetic polymorphism. Finally, we infer three gene duplications on one haplotype, based on apparent heterozygosity within these genes in the genomes of haploid males. This study strengthens the evidence that this supergene originated early in the evolution of Formica and that just a few loci in this large region of suppressed recombination retain strongly differentiated alleles across contemporary Formica lineages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call