Abstract

Changes to titanium implants smooth-surfaces after instrumentation were comparatively analyzed using low-vacuum scanning electron microscopy (LV-SEM) and white-light confocal (WLC) profilometry, to accurately evaluate curved surfaces. Sixty titanium implants screwed to their abutments were randomly split into three groups for cleaning treatment with (S) stainless-steel Gracey-curettes, (T) titanium Langer-curettes, and (P) an ultrasonic-device with the probe covered with a plastic-tip. One sector of each implant was left unprocessed (U). The other sectors were cleaned for either 60s, to simulate a single cleaning session, or 180s to simulate a series of sessions. Surface morphology was analyzed by LV-SEM, without metal sputtering. Quantitative evaluations of the roughness of surfaces were performed using a WLC-profilometer. The Wilcoxon and the Mann-Whitney tests were used in statistical comparisons. U-surfaces showed that thin transverse ridges and grooves, i.e. a polarized surface roughness was substantially compromised after S-instrumentation. Small surface alterations, increasing with time, were also recorded after T-·and·P-instrumentation, although to a lesser degree. The gap of the fixture-abutment connection appeared almost completely clean after T-, clotted with titanium debris after S-, and clotted with plastic debris after P-treatment. The mean roughness (Ra) was unchanged after P-, significantly increased after S- and decreased after T-treatment, when compared with U. The Rz roughness-parameter, calculated along the fixture Y-axis, of S, T, and P resulted similar and significantly lower than that of U. Rz (X-axis) resulted unchanged after P-, slightly increased (+40%) after T-, and greatly increased (+260%) after S-treatment, this latter being statistically significant when compared with U. The careful use of titanium-curettes could produce only minimal smooth surface alteration particularly over prolonged treatments, and avoid debris production that could endanger implant preservation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.