Abstract

The mechanical response of elastomer composites to applied magnetic fields is examined. These elastomer composites consist of carbonyl iron particles embedded within a molded elastomer matrix. The composite is subjected to a strong magnetic field during curing, which causes the iron particles to form columnar structures that are parallel to the applied field. This special composite geometry is known to enhance the mechanical response to the application of post-cured magnetic fields. Experimental data is presented that shows that up to a 0.6 MPa change in mechanical shear modulus (which represents 30-40% change in modulus for the materials tested) is possible in response to an applied magnetic field for a composite containing 30% (V/V) iron particles. A simple quasi-static dipole model is presented to examine the magnetoviscoelastic effect of these elastomer composites. The model is semi-empirical in that it may be fit to experimental data over a broad range of applied fields by adjusting a parameter that accounts for unmodeled multipolar magnetic interactions between particles within the composite. Such elastomer composites hold promise in enabling variable stiffness devices and adaptive structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.