Abstract

The inverse magnetoelectric MEE-effect in the SmFe3(BO3)4 single-crystal sample in an applied electric field has been studied. The electric field E consists of two components: a constant one, e0, and a variable one, e × cos(ωt). The investigated compound evokes great interest due to the existence of both linear and quadratic contributions to the magnetoelectric effect. According to theoretical analysis, the effective susceptibility of the first harmonic of magnetic moment oscillations depends on the dc electric field component e0. Indeed, according to the measurement data, the dc field e0 significantly affects the MEE-effect first-harmonic amplitude: depending on the e0 sign, these oscillations can be either amplified or suppressed. This offers an opportunity for controlling the magnetic moment oscillation amplitude at the applied electric field frequency, including the signal modulation, which is promising for application. In the applied dc field e0, a slight change in the susceptibility of the MEE-effect term quadratic to the electric field was detected. The mathematical apparatus used correctly describes the qualitative dependence of the MEE-effect amplitude on the dc field e0, while the quantity appears to be approximately twofold overestimated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.